

ExB Shear Effect on Micro-turbulence in L and H mode plasmas

College W&M **Colorado Sch Mines** Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

Y. Ren¹ W. Guttenfelder¹, S.M. Kaye¹, E. Mazzucato¹, J-K Park¹, K.C. Lee² 1. PPPL 2. U.C. Davis

NSTX Research Forum, March 16th , 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U **loffe Inst RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati **CEA**, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

Background and Motivations

- ExB shear predicted to be an effective mechanism for suppressing micro-turbulence
 - Possibly the mechanism to explain the observed neo-classical ion thermal transport in NSTX H-mode plasmas
 - The ExB shear quench rule goes as: $\gamma_E / \gamma_{max} = \alpha_E$
 - α_E has dependence on plasma elongation and triangularity [Kinsey et al., PoP 2007]
 - Less ExB shear is needed to quench transport at high elongation and low aspect ratio, which is favorable for NSTX-U
- Previous studies on ExB shear carried out on NSTX
 - ExB shear found to suppress electron-gyro scale [Smith et al., PRL 2009]
 - Spontaneous and change not controlled
 - Ion diffusivity found to be correlated with local ExB shear changed by applying 3D field [Kaye et al., NF 2009]
 - No turbulence measurement (BES in 2010, but no high-k)
 - No study on the effect of plasma shaping

Scenario I: L-mode Plasmas

- Beam-driven L-mode plasma developed for WPI research ideal for high-k measurement and for ExB shear suppression study.
 - Large range of ExB shear with long MHD free period ~ 100 ms
 - Strong fluctuations and large plasma rotation (Doppler shift): ideal for high-k scattering measurement

- Plan is to measure fluctuations with BES and high-k scattering system at different radial positions as ExB shear increases due to NBI injection, and if possible, scan NBI power.
 - If the same L-mode plasma used for the group XP, we can piggyback for this scenario.

Scenario II: H-mode Plasmas

• H-mode plasma with 3D field braking demonstrated the ability to control the edge ExB shear [Kaye et al., NF 2009]

- Plan is to study ExB shear quench dependence on plasma shaping, *i.e.* elongation and triangularity
 - Apply 3D field braking with different plasma shaping
 - Emphasize on the dependence on elongation
 - BES and high-k for turbulence measurement

XP: Assessing the 2D k Spectrum of High-k Turbulence

- Preliminary high-k measurements in RF-heated L-mode plasmas indicate some systematic increase in spectral power with higher k_{θ}/k_{r} ratio
 - Small Doppler shift made
 it difficult to measure scattering
 power
 - Lack of MSE and CHERS:
 hard to do detailed analysis
 and nonlinear GYRO simulation

Experimental Plan

- Produce desired plasma target: beam-heated L-mode plasma
 - Pretty reproducible plasmas
 - Strong high-k signal
 - Large toroidal rotation
 - MSE and CHERS measurements available
- First position high-k scattering system at smaller k_{θ}/k_r ratio then go to larger k_{θ}/k_r ratios
 - Two configurations are needed and the third is desired if time permits
- The same technique as used in Dave Smith's XP, which concentrates on H-mode plasmas.
 - Possible to combine the two XPs?

Diagnostic Needs and Analysis

- Must-have diagnostics:
 - High-k, BES
 - CHERS, MPTS, MSE
 - Magnetics

- Planned analysis
 - LRDFIT, TRANSP, GS2, GYRO